Пифагор Профиль 2020 год.
Привет, меня зовут Евгений, и я готовлю к ЕГЭ и ОГЭ по математике уже девятый год.
Тут есть:
- стримы с решением вариантов на 100 баллов
- видеоуроки с домашним заданием
- разбор сканов работ обычных школьников с реального экзамена
- разбор всех задач из открытого банка ФИПИ
Задача 1 – 01:48
Студент получил свой первый гонорар в размере 1300 рублей за выполненный перевод. Он решил на все полученные деньги купить букет роз для своей учительницы английского языка. Какое наибольшее количество роз сможет купить студент, если удержанный у него налог на доходы составляет 13% гонорара, розы стоят 100 рублей за штуку и букет должен состоять из нечетного числа цветов?
Задача 2 – 04:40
На диаграмме показан средний балл участников 10 стран в тестировании учащихся 8-го класса по математике в 2007 году (по 1000-балльной шкале). Среди указанных стран третье место принадлежит Австралии. Определите, какое место с конца занимает Тунис.
Задача 3 – 05:31
Найдите площадь квадрата, вершины которого имеют координаты (2;5), (-2;9), (-6;5), (-2;1).
Задача 4 – 09:27
В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Задача 5 – 11:54
Найдите корень уравнения
3^log_81(8x+8) =4.
Задача 6 – 17:49
Один острый угол прямоугольного треугольника на 30° больше другого. Найдите больший острый угол. Ответ дайте в градусах.
Задача 7 – 18:40
На рисунке изображён график функции y=f(x). Прямая, проходящая через точку (-6;-1), касается этого графика в точке с абсциссой 6. Найдите f^' (6).
Задача 8 – 22:43
Бетонный шар весит 0,5 т. Сколько тонн будет весить шар вдвое большего радиуса, сделанный из такого же бетона?
Задача 9 – 28:25
Найдите значение выражения
√(9-4√5) -√5.
Задача 10 – 36:11
Наблюдатель, находящийся на высоте h м над поверхностью земли, видит линию горизонта на расстоянии l км, которое можно найти по формуле l=√(Rh/500), где R=6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 километров. К пляжу ведёт лестница, каждая ступенька которой имеет высоту 10 см. На сколько ступенек ему нужно подняться, чтобы он увидел горизонт на расстоянии 6,4 километра?
Задача 11 – 42:00
Расстояние между городами A и B равно 500 км. Из города A в город B выехал автомобиль, а через 2 часа следом за ним со скоростью 75 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите скорость автомобиля. Ответ дайте в километрах в час.
Задача 12 – 56:33
В какой точке функция y=√(x^2+10x+55) принимает наименьшее значение?
Задача 13 – 58:48
а) Решите уравнение
(8sin^2 x-6 sinx-5)∙√(-cosx )=0.
б) Найдите его корни, принадлежащие промежутку [-π/2; 3π/2).
Задача 14 – 01:13:18
В кубе ABCDA_1 B_1 C_1 D_1 все рёбра равны 7. На его ребре BB_1 отмечена точка K так, что KB=4. Через точки K и C_1 проведена плоскость α, параллельная прямой BD_1.
а) Докажите, что A_1 P:PB_1=1:3, где P- точка пересечения плоскости α с ребром A_1 B_1.
б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.
Задача 15 – 01:27:21
Решите неравенство
9^(x-4)-3^(x-4) (9-x^2 )-9x^2≥0.
Задача 16 – 01:35:00
Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q- середина CD.
а) Докажите, что четырёхугольник DQOH- параллелограмм.
б) Найдите AD, если ∠BAD=60° и BC=2.
Задача 17 – 01:56:19
В июле 2016 года планируется взять кредит в размере 6,6 млн. руб. Условия возврата таковы:
- каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
- с февраля по июнь необходимо выплатить часть долга;
- в июле 2017, 2018 и 2019 годов долг остается равным 6,6 млн. руб.;
- суммы выплат 2020 и 2021 годов равны.
Найдите r, если в 2021 году долг будет выплачен полностью и общие выплаты составят 12,6 млн. рублей.
Задача 18 – 02:20:31
Найдите все значения a, при каждом из которых уравнение
|x^2-2ax+7|=|6a-x^2-2x-1|
имеет более двух различных корней.
Задача 19 – 02:43:45
Максим должен был умножить двузначное число на трёхзначное число (числа с нуля начинаться не могут). Вместо этого он просто приписал трёхзначное число справа к двузначному, получив пятизначное число, которое оказалось в N раз (N- натуральное число) больше правильного результата.
а) Могло ли N равняться 2?
б) Могло ли N равняться 10?
в) Каково наибольшее возможное значение N?
#ВариантыЕГЭпрофильШколаПифагора